MATH 245 F18, Exam 2 Solutions

1. Carefully define the following terms: Proof by Contradiction theorem, Proof by Cases theorem, Proof by Induction, Proof by Reindexed Induction.
Let p, q be propositions. The Proof by Contradiction theorem tells us that if $p \wedge \neg q \equiv F$, then $p \rightarrow q$ is true. Let p, q be propositions. The Proof by Cases theorem tells us that if there are propositions $c_{1}, c_{2}, \ldots, c_{k}$ with $c_{1} \vee c_{2} \vee \cdots \vee c_{k} \equiv T$, and each of $\left(p \wedge c_{1}\right) \rightarrow q$, $\left(p \wedge c_{2}\right) \rightarrow q, \ldots,\left(p \wedge c_{k}\right) \rightarrow q$, then $p \rightarrow q$ is true. To prove $\forall x \in \mathbb{N} P(x)$ by induction, we must (a) Prove $P(1)$; and (b) Prove $\forall x \in \mathbb{N}, P(x) \rightarrow P(x+1)$. To prove $\forall x \in \mathbb{N} P(x)$ by reindexed induction, we must (a) Prove $P(1)$; and (b) Prove $\forall x \in \mathbb{N}$ with $x \geq 2, P(x-1) \rightarrow P(x)$.
2. Carefully define the following terms: well-ordered, recurrence, big Omega, big Theta.

Let S be a set of numbers, with an ordering $<$. We say that S is well-ordered by $<$ if every nonempty subset of S has a minimum element according to $<$. A sequence is a recurrence if all but finitely many of its terms are defined in terms of its previous terms. Given two sequences a_{n} and b_{n}, we say that a_{n} is big Omega of b_{n} to mean $\exists n_{0} \in \mathbb{N}, \exists M \in \mathbb{R}, \forall n \geq n_{0}, M\left|a_{n}\right| \geq\left|b_{n}\right|$. Given two sequences a_{n} and b_{n}, we say that a_{n} is big Theta of b_{n} to mean that a_{n} is big O of b_{n} and also a_{n} is big Omega of b_{n}.
3. Suppose that an algorithm has runtime specified by the recurrence relation $T_{n}=$ $2 n T_{n / 2}+3$. Determine what, if anything, the Master Theorem tells us.
Because $2 n$ is not a constant, the Master theorem does not apply.
4. Use induction to prove that, for all $n \in \mathbb{N}, \frac{(2 n)!}{n!n!} \geq 2^{n}$.

Base case: $n=1$. $\frac{(2 \cdot 1)!}{1!1!}=2$, while $2^{1}=2$. Verified.
Inductive case: Let $n \in \mathbb{N}$, and assume that $\frac{(2 n)!}{n!n!} \geq 2^{n}$. Multiply by $\frac{(2 n+2)(2 n+1)}{(n+1)(n+1)}$. We get $\frac{(2(n+1))!}{(n+1)!(n+1)!}=\frac{(2 n+2)(2 n+1)}{(n+1)(n+1)} \frac{(2 n)!}{n!n!} \geq \frac{(2 n+2)(2 n+1)}{(n+1)(n+1)} 2^{n}=\frac{2(2 n+1)}{n+1} 2^{n}=\frac{2 n+1}{n+1} 2^{n+1}=\frac{(n+1)+n}{n+1} 2^{n+1}=$ $\left(1+\frac{n}{n+1}\right) 2^{n+1} \geq 2^{n+1}$. Thus $\frac{(2(n+1))!}{(n+1)!(n+1)!} \geq 2^{n+1}$.
5. Let $a_{n}=n^{1.9}+n^{2}$. Prove that $a_{n}=O\left(n^{2}\right)$.

Take $n_{0}=1$ and $M=2$. For all $n \geq n_{0}$, we have $n^{0.1} \geq 1=n^{0}$, so $n^{2} \geq n^{1.9}$. Hence $a_{n} \leq n^{2}+n^{2}$, and thus $\left|a_{n}\right|=a_{n} \leq 2 n^{2}=2\left|n^{2}\right|$.
6. Let $x \in \mathbb{R}$. Prove that there is at most one $n \in \mathbb{Z}$ with $n-\frac{1}{2} \leq x<n+\frac{1}{2}$. Do not use any theorems about floors or ceilings.
Suppose that there are $m, n \in \mathbb{Z}$ with $n-\frac{1}{2} \leq x<n+\frac{1}{2}$ and $m-\frac{1}{2} \leq x<m+\frac{1}{2}$. Hence $n-\frac{1}{2} \leq x<m+\frac{1}{2}$. Adding $\frac{1}{2}$ to both sides, we get $n<m+1$. But also $m-\frac{1}{2} \leq x<n+\frac{1}{2}$. Subtracting $\frac{1}{2}$ from both sides, we get $m-1<n$. Hence $m-1<n<m+1$. By Thm 1.12 in the book, since $m, n \in \mathbb{Z}$, in fact $m=n$.
7. Let $x \in \mathbb{R}$. Prove that there is at least one $n \in \mathbb{Z}$ with $n-\frac{1}{2} \leq x<n+\frac{1}{2}$. Do not use any theorems about floors or ceilings.
We use maximum element induction. Define $S=\left\{m \in \mathbb{Z}: m-\frac{1}{2} \leq x\right\}$, a nonempty set of integers with $x+\frac{1}{2}$ as an upper bound. Hence S has some maximum element n. $n-\frac{1}{2} \leq x$ because $n \in S$. We have two cases: if $x<n+\frac{1}{2}$, we are done. If instead $x \geq n+\frac{1}{2}$, then $n+1$ is an integer, and satisfies $(n+1)-\frac{1}{2} \leq x$, so $n+1 \in S$. But then n was the maximum element of S, a contradiction. Hence $n-\frac{1}{2} \leq x<n+\frac{1}{2}$.
8. Solve the recurrence, with initial conditions $a_{0}=3, a_{1}=4$, and relation $a_{n}=4 a_{n-1}-$ $4 a_{n-2}(n \geq 2)$.
This has characteristic polynomial $r^{2}=4 r-4$, which factors as $(r-2)^{2}=0$. Hence we have a double root, and the general solution is $a_{n}=A 2^{n}+B n 2^{n}$. Applying our initial conditions gives $3=a_{0}=A 2^{0}+B \cdot 0 \cdot 2^{0}=A$, and $4=a_{1}=A 2^{1}+B \cdot 1 \cdot 2^{1}=2 A+2 B$. The system of equations $\{3=A, 4=2 A+2 B\}$ has solution $\{A=3, B=-1\}$, so the specific solution is $a_{n}=3 \cdot 2^{n}-n \cdot 2^{n}=(3-n) 2^{n}$.
9. The Tribonacci numbers are given by initial conditions $T_{0}=0, T_{1}=1, T_{2}=1$, and recurrence relation $T_{k}=T_{k-1}+T_{k-2}+T_{k-3}(k \geq 3)$. Prove that, for all $k \in \mathbb{N}$, $T_{k}<2^{k}$.

We handle the three base cases $k=0,1,2$ separately: $T_{0}=0<1=2^{0}, T_{1}=1<2=$ $2^{1}, T_{2}=1<4=2^{2}$. We now use strong induction. Let $k \in \mathbb{N}$ with $k \geq 3$. Assume that $T_{k-1}<2^{k-1}, T_{k-2}<2^{k-2}, T_{k-3}<2^{k-3}$. Now, since $k \geq 3, T_{k}=T_{k-1}+T_{k-2}+T_{k-3}<$ $2^{k-1}+2^{k-2}+2^{k-3}<2^{k-1}+2^{k-2}+2^{k-3}+\underbrace{2^{k-3}}=2^{k-1}+2^{k-2}+2^{k-2}=2^{k-1}+2^{k-1}=2^{k}$. Hence $T_{k}<2^{k}$.

10. Prove that $\sqrt{3}$ is irrational.

We argue by contradiction. Suppose that $\sqrt{3}$ is rational. Hence we may assume there are $m, n \in \mathbb{Z}$, with $n \neq 0$, and $\sqrt{3}=\frac{m}{n}$. By cancelling any common factors, we may also assume that m, n have no common factors. Squaring, we get $3=\frac{m^{2}}{n^{2}}$ and hence $3 n^{2}=m^{2}$. Now, $3 \mid m^{2}$, and 3 is prime, so $3 \mid m$ (or $3 \mid m$). Write $m=3 k$, for some integer k, and substitute back. We get $3 n^{2}=(3 k)^{2}=9 k^{2}$. Hence $n^{2}=3 k^{2}$. Again, $3 \mid n^{2}$, and 3 is prime, so $3 \mid n$ (or $3 \mid n$). Hence m, n both have the common factor 3 , a contradiction.

